Paper: A Bootstrapping Approach To Named Entity Classification Using Successive Learners

ACL ID P03-1043
Title A Bootstrapping Approach To Named Entity Classification Using Successive Learners
Venue Annual Meeting of the Association of Computational Linguistics
Session Main Conference
Year 2003
Authors

This paper presents a new bootstrapping approach to named entity (NE) classification. This approach only requires a few common noun/pronoun seeds that correspond to the concept for the target NE type, e.g. he/she/man/woman for PERSON NE. The entire bootstrapping procedure is implemented as training two successive learners: (i) a decision list is used to learn the parsing-based high precision NE rules; (ii) a Hidden Markov Model is then trained to learn string sequence-based NE patterns. The second learner uses the training corpus automatically tagged by the first learner. The resulting NE system approaches supervised NE performance for some NE types. The system also demonstrates intuitive support for tagging user-defined NE types. The differences of this approach from the co-training-based...