Paper: Automatic Image Annotation Using Maximum Entropy Model

ACL ID I05-1004
Title Automatic Image Annotation Using Maximum Entropy Model
Venue International Joint Conference on Natural Language Processing
Session Main Conference
Year 2005
Authors

Automatic image annotation is a newly developed and promising technique to provide semantic image retrieval via text descriptions. It concerns a process of automatically labeling the image contents with a pre-defined set of keywords which are exploited to represent the image semantics. A Maximum Entropy Model-based approach to the task of automatic image annotation is proposed in this paper. In the phase of training, a basic visual vocabulary con- sisting of blob-tokens to describe the image content is generated at first; then the statistical relationship is modeled between the blob-tokens and keywords by a Maximum Entropy Model constructed from the training set of labeled images. In the phase of annotation, for an unlabeled image, the most likely associated keywords are predicte...