NLP
Deep Learning

Word Embeddings (1/2)
What Is the Feature Vector x?

- Typically a vector representation of a single character or word
- Often reflects the *context* in which that word is found
- Could just do counts, but that leads to sparse vectors
- Commonly used techniques: *word2vec* or *GloVe* word embeddings
Embeddings Are Magic, Part 1

\[\text{vector('king')} - \text{vector('man')} + \text{vector('woman')} \approx \text{vector('queen')} \]
Embeddings Are Magic, Part 2

GloVe vectors for comparative and superlative adjectives

More Examples

Examples from Richard Socher
word2vec

• Popular group of models for word embeddings
• https://code.google.com/p/word2vec/
 – includes the models and pre-trained embeddings
 – Pre-trained is good, because training takes a lot of data
• Gensim: Python library that works with word2vec
 – https://radimrehurek.com/gensim/
• Most notable models:
 – Skipgrams and CBOW
Skip-grams

• Predict each neighboring word
 – in a context window of $2C$ words
 – from the current word.

• So for $C=2$, we are given word w_t and predicting these 4 words:
 $$[w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}]$$
Skip-grams learn 2 embeddings for each \(w \) input embedding \(v \), in the input matrix \(W \):

- Column \(i \) of the input matrix \(W \) is the \(1 \times d \) embedding \(v_i \) for word \(i \) in the vocabulary.

Output embedding \(v' \), in output matrix \(W' \):

- Row \(i \) of the output matrix \(W' \) is a \(d \times 1 \) vector embedding \(v'_i \) for word \(i \) in the vocabulary.
Setup

• Walking through corpus pointing at word $w(t)$, whose index in the vocabulary is j, so we’ll call it w_j $(1 < j < |V|)$.

• Let’s predict $w(t+1)$, whose index in the vocabulary is k $(1 < k < |V|)$. Hence our task is to compute $P(w_k|w_j)$.
One-hot vectors

• A vector of length $|V|$
• Example:
 - $[0,0,0,0,1,0,0,0,0,0,0,...]$
CBOW and skipgram (Mikolov 2013)

\[w_i = \sum \{ w_{i-2}, w_{i-1}, w_{i+1}, w_{i+2} \} \]
Skip-gram

Input layer
1-hot input vector

Projection layer
embedding for w_t

Output layer
probabilities of context words

$W_{\text{d} \times |V|}$

$W'_{\text{d} \times |V|}$

y_1
y_2
\vdots
y_k
w_{t-1}
$y_{|V|}$
\vdots
$y_{|V|}$
w_{t+1}

y_1
y_2
\vdots
y_k
w_{t-1}
$y_{|V|}$
\vdots
$y_{|V|}$
w_{t+1}

Slide courtesy of Jurafsky & Martin
Skip-gram

Input layer
1-hot input vector

Projection layer
embedding for w_t

Output layer
probabilities of context words

W $|V| \times d$

$h = v_j$

$W'_{d \times |V|}$

y_1
y_2
\vdots
y_k
$y_{|V|}$

$W'_{d \times |V|}$

y_1
y_2
\vdots
y_k
$y_{|V|}$

$1 \times |V|$
$1 \times d$

w_t
x_1
x_2
\vdots
x_j
\vdots
$x_{|V|}$

w_{t-1}
w_{t+1}

Slide courtesy of Jurafsky & Martin
Notes

• Sparse vs. dense vectors
 – 100,000 dimensions vs. 300 dimensions
 – <10 non-zero dimensions vs. 300 non-zero dimensions

• Dense vectors
 – Semantic similarity (cf. LSA, Brown clusters)
Similarity Computation

• Similarity is computed using the dot product of the two vectors

• To convert a similarity to a probability, use softmax

\[p(w_k | w_j) = \frac{\exp(c_k v_j)}{\sum_i \exp(c_i v_j)} \]

• In practice, use negative sampling
 – too many words in the denominator
 – the denominator is only computed for a few words
Softmax

![Diagram showing Softmax output for different inputs. The top chart represents the output for input values 1 to 4, with values ranging from 0 to 1. The bottom chart shows a similar representation for different values, with output values ranging from 0 to 0.6.](image)
Evaluating Embeddings

- Nearest Neighbors
- Analogies
 - (A:B)::(C:?)
Similarity Data Sets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Word pairs</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG</td>
<td>65</td>
<td>Rubenstein and Goodenough (1965)</td>
</tr>
<tr>
<td>MC</td>
<td>30</td>
<td>Miller and Charles (1991)</td>
</tr>
<tr>
<td>WS-353</td>
<td>353</td>
<td>Finkelstein et al. (2002)</td>
</tr>
<tr>
<td>MTurk-287</td>
<td>287</td>
<td>Radinsky et al. (2011)</td>
</tr>
<tr>
<td>MTurk-771</td>
<td>771</td>
<td>Halawi et al. (2012)</td>
</tr>
<tr>
<td>MEN</td>
<td>3000</td>
<td>Bruni et al. (2012)</td>
</tr>
<tr>
<td>RW</td>
<td>2034</td>
<td>Luong et al. (2013)</td>
</tr>
<tr>
<td>Verb</td>
<td>144</td>
<td>Baker et al. (2014)</td>
</tr>
<tr>
<td>SimLex</td>
<td>999</td>
<td>Hill et al. (2014)</td>
</tr>
</tbody>
</table>

[Table from Faruqui et al. 2016]
<table>
<thead>
<tr>
<th>Type of relationship</th>
<th>Word Pair 1</th>
<th>Word Pair 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common capital city</td>
<td>Athens</td>
<td>Greece</td>
</tr>
<tr>
<td>All capital cities</td>
<td>Astana</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>Currency</td>
<td>Angola</td>
<td>kwanza</td>
</tr>
<tr>
<td>City-in-state</td>
<td>Chicago</td>
<td>Illinois</td>
</tr>
<tr>
<td>Man-Woman</td>
<td>brother</td>
<td>sister</td>
</tr>
<tr>
<td>Adjective to adverb</td>
<td>apparent</td>
<td>apparently</td>
</tr>
<tr>
<td>Opposite</td>
<td>possibly</td>
<td>impossibly</td>
</tr>
<tr>
<td>Comparative</td>
<td>great</td>
<td>greater</td>
</tr>
<tr>
<td>Superlative</td>
<td>easy</td>
<td>easiest</td>
</tr>
<tr>
<td>Present Participle</td>
<td>think</td>
<td>thinking</td>
</tr>
<tr>
<td>Nationality adjective</td>
<td>Switzerland</td>
<td>Swiss</td>
</tr>
<tr>
<td>Past tense</td>
<td>walking</td>
<td>Cambodia</td>
</tr>
<tr>
<td>Plural nouns</td>
<td>mouse</td>
<td>read</td>
</tr>
<tr>
<td>Plural verbs</td>
<td>work</td>
<td>swimming</td>
</tr>
</tbody>
</table>

[Mikolov et al. 2013]
<table>
<thead>
<tr>
<th></th>
<th>Input Vector</th>
<th>Output Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>drink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>juice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes

• Word embeddings perform matrix factorization of the co-occurrence matrix
• Word2vec is a simple feed-forward neural network
• Training is done using backpropagation using SGD
• Negative sampling for training
NLP