NLP
Introduction to NLP

Inference
Modus Ponens

• Modus ponens:
 \[\begin{align*}
 &\alpha \\
 &\alpha \implies \beta \\
 \hline
 &\beta
 \end{align*} \]

• Example:
 \[\begin{align*}
 & Cat(Martin) \\
 & \forall x: Cat(x) \implies EatsFish(x) \\
 & EatsFish(Martin)
 \end{align*} \]
Inference

• **Forward chaining**
 – as individual facts are added to the database, all derived inferences are generated

• **Backward chaining**
 – starts from queries
 – Example: the Prolog programming language

• **Prolog example**
 – father(X, Y) :- parent(X, Y), male(X).
 – parent(john, bill).
 – parent(jane, bill).
 – female(jane).
 – male (john).
 – ?– father(M, bill).
The Kinship Domain

• Brothers are siblings
 \(\forall x,y \ Brother(x,y) \Rightarrow Sibling(x,y) \)

• One's mother is one's female parent
 \(\forall m,c \ Mother(c) = m \iff (Female(m) \land Parent(m,c)) \)

• “Sibling” is symmetric
 \(\forall x,y \ Sibling(x,y) \iff Sibling(y,x) \)
Universal Instantiation

• Every instantiation of a universally quantified sentence is entailed by it:

\[
\forall \nu \alpha \\
\text{Subst}\{\nu/g\}, \alpha
\]

for any variable \(\nu \) and ground term \(g \)

• E.g., \(\forall x \text{Cat}(x) \land \text{Fish}(y) \Rightarrow \text{Eats}(x,y) \) yields:

\(\text{Cat}(Martin) \land \text{Fish}(Blub) \Rightarrow \text{Eats}(Martin,Blub) \)
Existential Instantiation

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:
 \[
 \exists v \alpha \\
 \text{Subst}\{\{v/k\}, \alpha\}
 \]

- E.g., $\exists x \text{Cat}(x) \land \text{EatsFish}(x)$ yields:

 \[
 \text{Cat}(C_1) \land \text{EatsFish}(C_1)
 \]

 provided C_1 is a new constant symbol, called a Skolem constant
Unification

• If a substitution θ is available, unification is possible

• Examples:
 – $p=\text{Eats}(x,y)$, $q=\text{Eats}(x,\text{Blub})$, possible if $\theta = \{y/\text{Blub}\}$
 – $p=\text{Eats}(\text{Martin},y)$, $q=\text{Eats}(x,\text{Blub})$, possible if $\theta = \{x/\text{Martin}, y/\text{Blub}\}$
 – $p=\text{Eats}(\text{Martin},y)$, $q=\text{Eats}(y,\text{Blub})$, fails because Martin \neq Blub

• Subsumption
 – Unification works not only when two things are the same but also when one of them subsumes the other one
 – Example: All cats eat fish, Martin is a cat, Blub is a fish
NLP