NLP
Introduction to NLP

Knowledge Representation
Knowledge Representation

- Ontologies
- Categories and objects
- Events
- Times
- Beliefs
Knowledge Representation

- **Object**
 - Martin the cat

- **Categories**
 - Cat

- **Ontology**
 - Mammal includes Cat, Dog, Whale
 - Cat includes PersianCat, ManxCat

- **ISA relation**
 - ISA (Martin, Cat)

- **AKO relation**
 - AKO (PersianCat, Cat)

- **HASA relation**
 - HASA (Cat, Tail)
Semantics of FOL

- FOL sentences can be assigned a value of true or false.
 \[\text{ISA}(\text{Milo},\text{Cat}) = \text{true} \]

- Milo is younger than Martin
 \[<(\text{AgeOf}(\text{Milo}),\text{AgeOf}(\text{Martin})) = \text{true} \]
 \[= (\text{AgeOf}(\text{Milo}),\text{AgeOf}(\text{Martin})) = \text{false} \]
Examples with Quantifiers

• All cats eat fish
 \(\forall x:ISA(x,\text{Cat}) \Rightarrow EatFish(x) \)
Representing Events

- Martin ate
- Martin ate in the morning
- Martin ate fish
- Martin ate fish in the morning
One Possible Representation

• FOL representations
 – Eating1(Martin)
 – Eating2(Martin,Morning)
 – Eating3(Martin,Fish)
 – Eating4(Martin,Fish,Morning)

• Meaning postulates
 – Eating4(x,y,z) \rightarrow Eating3(x,y)
 – Eating4(x,y,z) \rightarrow Eating2(x,z)
 – Eating4(x,y,z) \rightarrow Eating1(x)

Example from Jurafsky and Martin
Second Possible Representation

- **Eating4(x,y,z)**
 - With some arguments unspecified

- **Problems**
 - Too many commitments
 - Hard to combine Eating4(Martin,Fish,z) with Eating4(Martin,y,Morning)

Example from Jurafsky and Martin
Third Possible Representation

• Reification
 – $\exists e: \text{ISA}(e, \text{Eating}) \land \text{Eater}(e, \text{Martin}) \land \text{Eaten}(e, \text{Fish})$

Example from Jurafsky and Martin
Representing Time

• Example
 – Martin went from the kitchen to the yard
 – ISA(e,Going) ^ Goer(e,Martin) ^ Origin (e,kitchen) ^ Target (e,yard)

• Issue
 – no tense information: past? present? future?

• Fluents
 – A predicate that is true at a given time: T(f,t)
Representing Time

Figure 12.2 Predicates on time intervals.

Example from Russell and Norvig
Representing Time

Example from Jurafsky and Martin
Representing time

- \(\exists i,e,w,t: \text{Isa}(w, \text{Arriving}) \land \text{Arriver}(w, \text{Speaker}) \land \text{Destination}(w, \text{NewYork}) \land \text{IntervalOf}(w, i) \land \text{EndPoint}(i, e) \land \text{Precedes}(e, \text{Now}) \)
- \(\exists i,e,w,t: \text{Isa}(w, \text{Arriving}) \land \text{Arriver}(w, \text{Speaker}) \land \text{Destination}(w, \text{NewYork}) \land \text{IntervalOf}(w, i) \land \text{MemberOf}(i, \text{Now}) \)
- \(\exists i,e,w,t: \text{Isa}(w, \text{Arriving}) \land \text{Arriver}(w, \text{Speaker}) \land \text{Destination}(w, \text{NewYork}) \land \text{IntervalOf}(w, i) \land \text{StartPoint}(i, s) \land \text{Precedes}(\text{Now}, s) \)

Example from Jurafsky and Martin
Representing time

- **We fly from San Francisco to Boston at 10.**
- **Flight 1390 will be at the gate an hour now.**
 - Use of tenses
- **Flight 1902 arrived late.**
- **Flight 1902 had arrived late.**
 - “similar” tenses
- **When Mary’s flight departed, I ate lunch**
- **When Mary’s flight departed, I had eaten lunch**
 - reference point

Example from Jurafsky and Martin
Aspect

• Stative
 – I know my departure gate

• Activity
 – John is flying
 (no particular end point)

• Accomplishment
 – Sally booked her flight
 (natural end point and result in a particular state)

• Achievement
 – She found her gate

• Figuring out statives:
 – I am needing the cheapest fare.
 – I am wanting to go today.
 – Need the cheapest fare!

Example from Jurafsky and Martin
Representing Beliefs

• Example
 – Milo believes that Martin ate fish

• One possible representation
 – $\exists e, b: \text{ISA}(e, \text{Eating}) \land \text{Eater}(e, \text{Martin}) \land \text{Eaten}(e, \text{Fish}) \land \text{ISA}(b, \text{Believing}) \land \text{Believer}(b, \text{Milo}) \land \text{Believed}(b, e)$

• However this implies (by dropping some of the terms) that “Martin ate fish” (without the Belief event)

• Modal logic
 – Possibility, Temporal Logic, Belief Logic
Representing Beliefs

• Want, believe, imagine, know – all introduce hypothetical worlds
• I believe that Mary ate British food.
• Reified example:
 – $\exists u,v: Isa(u, Believing) \land Isa(v, Eating) \land Believer(u, Speaker) \land BelievedProp(u, v) \land Eater(v, Mary) \land Eaten(v, BritishFood)$

 However this implies also:
 – $\exists u,v: Isa(v, Eating) \land Eater(v, Mary) \land Eaten(v, BritishFood)$

• Modal operators:
 – $Believing(Speaker, Eating(Mary, BritishFood))$ – not FOPC! – predicates in FOPC hold between objects, not between relations.
 – $Believes(Speaker, \exists v: ISA(v, Eating) \land Eater(v, Mary) \land Eaten(v, BritishFood))$
Modal operators

• Beliefs
• Knowledge
• Assertions
• Issues:

If you are interested in baseball, the Red Sox are playing tonight.
NLP